Editing and manipulating facial features in videos is an interesting and important field of research with a plethora of applications, ranging from movie post-production and visual effects to realistic avatars for video games and virtual assistants. To the best of our knowledge, this paper proposes the first method to perform photorealistic manipulation of facial expressions in videos. Our method supports semantic video manipulation based on neural rendering and 3D-based facial expression modelling. We focus on interactive manipulation of the videos by altering and controlling the facial expressions, achieving promising photorealistic results. The proposed method is based on a disentangled representation and estimation of the 3D facial shape and activity, providing the user with intuitive and easy-to-use control of the facial expressions in the input video. We also introduce a user-friendly, interactive AI tool that processes human-readable semantic labels about the desired emotion manipulations in specific parts of the input video and synthesizes photorealistic manipulated videos. We achieve that by mapping the emotion labels to valence-arousal (VA) values, which in turn are mapped to disentangled 3D facial expressions through an especially designed and trained expression decoder network. The paper presents detailed qualitative and quantitative experiments, which demonstrate the effectiveness of our system and the promising results it achieves. Additional results and videos can be found at the supplementary material (https://github.com/Girish-03/DeepSemManipulation).


翻译:在视频中编辑和操控面部特征是一个令人感兴趣和重要的研究领域,其应用范围多种多样,从电影后制作和视觉效应到视频游戏和虚拟助手的现实动画片,从电影后和视觉效应到现实的动画片等,都是一个令人感兴趣和重要的研究领域。据我们所知,本文件提出了对视频中的面部表达方式进行摄影现实化操纵的第一个方法。我们的方法支持基于神经成像和基于3D面部表现模型的语义操纵和3D面部表达方式进行语义操控。我们侧重于通过改变和控制面部表达方式,对视频进行互动操控,从而实现有希望的摄影现实效果。我们通过对3D面部面部形状和活动进行分解的表达和估计,为用户提供对输入视频中面部表达方式的直观和易用控制。我们还引入了一个方便用户的互动式AI工具,用于处理在输入视频中特定部分的可读的情感操纵的语义标签,并合成了光真切的视频。我们通过将真实的情感标签与感官(VA)值的值定位来做到这一点,然后将3D面部面部面部面部面部面部面部形状的表达结果绘制为不动动动的3D-MD的图像实验结果。我们特别设计和定性的定性和定性的图像的图像的图像的图像实验可以实现。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
A Compact Embedding for Facial Expression Similarity
Arxiv
5+阅读 · 2018年12月18日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员