We study active object tracking, where a tracker takes as input the visual observation (i.e., frame sequence) and produces the camera control signal (e.g., move forward, turn left, etc.). Conventional methods tackle the tracking and the camera control separately, which is challenging to tune jointly. It also incurs many human efforts for labeling and many expensive trial-and-errors in realworld. To address these issues, we propose, in this paper, an end-to-end solution via deep reinforcement learning, where a ConvNet-LSTM function approximator is adopted for the direct frame-toaction prediction. We further propose an environment augmentation technique and a customized reward function, which are crucial for a successful training. The tracker trained in simulators (ViZDoom, Unreal Engine) shows good generalization in the case of unseen object moving path, unseen object appearance, unseen background, and distracting object. It can restore tracking when occasionally losing the target. With the experiments over the VOT dataset, we also find that the tracking ability, obtained solely from simulators, can potentially transfer to real-world scenarios.


翻译:我们研究活跃的物体跟踪, 追踪器将视觉观测( 框架序列) 作为输入, 并生成相机控制信号( 例如, 向前移动, 向左转等) 。 常规方法将跟踪和相机控制分开, 这对联合调和具有挑战性。 它也要求人们作出许多努力, 在现实世界中贴标签, 以及许多昂贵的试验和感应器。 为了解决这些问题, 我们在本文件中建议, 通过深层强化学习, 一种端到端解决方案, 即 ConvNet- LSTM 函数匹配器被采用来进行直接框架对动作的预测 。 我们还提议一种环境增强技术和定制的奖赏功能, 这对于成功培训至关重要 。 跟踪器在模拟器( Vizdoom, 非现实引擎) 中受过训练, 显示在看不见的物体移动路径、 看不见的物体外观、 看不见的背景 和转移对象的情况下, 良好的概括性 。 在偶尔丢失目标时, 它可以恢复跟踪 。 通过 VOT 数据集的实验, 我们还发现追踪能力, 只能从模拟器中获取到真实世界的跟踪能力 。

3
下载
关闭预览

相关内容

标跟踪是指:给出目标在跟踪视频第一帧中的初始状态(如位置,尺寸),自动估计目标物体在后续帧中的状态。 目标跟踪分为单目标跟踪和多目标跟踪。 人眼可以比较轻松的在一段时间内跟住某个特定目标。但是对机器而言,这一任务并不简单,尤其是跟踪过程中会出现目标发生剧烈形变、被其他目标遮挡或出现相似物体干扰等等各种复杂的情况。过去几十年以来,目标跟踪的研究取得了长足的发展,尤其是各种机器学习算法被引入以来,目标跟踪算法呈现百花齐放的态势。2013年以来,深度学习方法开始在目标跟踪领域展露头脚,并逐渐在性能上超越传统方法,取得巨大的突破。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
Learning Discriminative Model Prediction for Tracking
Arxiv
7+阅读 · 2018年12月26日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
8+阅读 · 2018年6月19日
Arxiv
5+阅读 · 2018年4月30日
Arxiv
9+阅读 · 2018年3月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
Learning Discriminative Model Prediction for Tracking
Arxiv
7+阅读 · 2018年12月26日
Arxiv
7+阅读 · 2018年12月5日
Arxiv
8+阅读 · 2018年6月19日
Arxiv
5+阅读 · 2018年4月30日
Arxiv
9+阅读 · 2018年3月10日
Top
微信扫码咨询专知VIP会员