We consider a standard two-source model for uniform common randomness (UCR) generation, in which Alice and Bob observe independent and identically distributed (i.i.d.) samples of a correlated finite source and where Alice is allowed to send information to Bob over an arbitrary single-user channel. We study the \(\boldsymbol{\epsilon}\)-UCR capacity for the proposed model, defined as the maximum common randomness rate one can achieve such that the probability that Alice and Bob do not agree on a common uniform or nearly uniform random variable does not exceed \(\boldsymbol{\epsilon}.\) We establish a lower and an upper bound on the \(\boldsymbol{\epsilon}\)-UCR capacity using the bounds on the \(\boldsymbol{\epsilon}\)-transmission capacity proved by Verd\'u and Han for arbitrary point-to-point channels.
翻译:暂无翻译