Causal reversibility blends reversibility and causality for concurrent systems. It indicates that an action can be undone provided that all of its consequences have been undone already, thus making it possible to bring the system back to a past consistent state. Time reversibility is instead considered in the field of stochastic processes, mostly for efficient analysis purposes. A performance model based on a continuous-time Markov chain is time reversible if its stochastic behavior remains the same when the direction of time is reversed. We bridge these two theories of reversibility by showing the conditions under which causal reversibility and time reversibility are both ensured by construction. This is done in the setting of a stochastic process calculus, which is then equipped with a variant of stochastic bisimilarity accounting for both forward and backward directions.


翻译:基于随机过程代数的因果可逆性和时间可逆性的桥接 Translated abstract: 基于随机过程的时间可逆性主要用于进行高效的分析,而并发系统的因果可逆性则将可逆性和因果关系融合在一起。因果可逆性意味着,只要已经撤销了所有后果,就可以撤销动作,从而将系统回溯到先前的一致状态。我们通过展示在何种条件下可以通过建模实现因果可逆性和时间可逆性,对这两种可逆性理论进行了桥接。这在一个随机过程演算的背景下完成,该演算还配备了一种考虑正向和反向的随机等价关系的变体。

0
下载
关闭预览

相关内容

【2023新书】随机模型基础,815页pdf
专知会员服务
99+阅读 · 2023年5月10日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
【2022新书】强化学习工业应用,408页pdf
专知会员服务
226+阅读 · 2022年2月3日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
71+阅读 · 2021年12月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
0+阅读 · 2023年5月12日
VIP会员
相关VIP内容
【2023新书】随机模型基础,815页pdf
专知会员服务
99+阅读 · 2023年5月10日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
【2022新书】强化学习工业应用,408页pdf
专知会员服务
226+阅读 · 2022年2月3日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
71+阅读 · 2021年12月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员