NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)

2017 年 12 月 10 日 机器学习研究会
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)


点击上方 “机器学习研究会”可以订阅

摘要
 

转自:爱可可-爱生活

Probabilistic and Bayesian reasoning is one of the principle theoretical pillars to our understanding of machine learning. Over the last two decades, it has inspired a whole range of successful machine learning methods and influenced the thinking of many researchers in the community. On the other hand, in the last few years the rise of deep learning has completely transformed the field and led to a string of phenomenal, era-defining, successes. In this talk I will explore the interface between these two perspectives on machine learning, and through a number of projects I have been involved in, explore questions like: How can probabilistic thinking help us understand deep learning methods or lead us to interesting new methods? Conversely, how can deep learning technologies help us develop advanced probabilistic methods?

 

链接:

http://csml.stats.ox.ac.uk/news/2017-12-08-ywteh-breiman-lecture/


原文链接:

https://m.weibo.cn/1402400261/4183343342416996

“完整内容”请点击【阅读原文】
↓↓↓


登录查看更多
31

相关内容

贝叶斯方法可以用于学习神经网络权重的概率分布。将神经网络中的wi 和 b 由确定的值变成分布(distributions)。具体而言,为弥补反向传播的不足,通过在模型参数或模型输出上放置概率分布来估计。在权重上放置一个先验分布,然后尝试捕获这些权重在给定数据的情况下变化多少来模拟认知不确定性。该方法不是训练单个网络,而是训练网络集合,其中每个网络的权重来自共享的、已学习的概率分布。

The tutorial is written for those who would like an introduction to reinforcement learning (RL). The aim is to provide an intuitive presentation of the ideas rather than concentrate on the deeper mathematics underlying the topic. RL is generally used to solve the so-called Markov decision problem (MDP). In other words, the problem that you are attempting to solve with RL should be an MDP or its variant. The theory of RL relies on dynamic programming (DP) and artificial intelligence (AI). We will begin with a quick description of MDPs. We will discuss what we mean by “complex” and “large-scale” MDPs. Then we will explain why RL is needed to solve complex and large-scale MDPs. The semi-Markov decision problem (SMDP) will also be covered.

The tutorial is meant to serve as an introduction to these topics and is based mostly on the book: “Simulation-based optimization: Parametric Optimization techniques and reinforcement learning” [4]. The book discusses this topic in greater detail in the context of simulators. There are at least two other textbooks that I would recommend you to read: (i) Neuro-dynamic programming [2] (lots of details on convergence analysis) and (ii) Reinforcement Learning: An Introduction [11] (lots of details on underlying AI concepts). A more recent tutorial on this topic is [8]. This tutorial has 2 sections: • Section 2 discusses MDPs and SMDPs. • Section 3 discusses RL. By the end of this tutorial, you should be able to • Identify problem structures that can be set up as MDPs / SMDPs. • Use some RL algorithms.

成为VIP会员查看完整内容
0
74

When I started out, I had a strong quantitative background (chemical engineering undergrad, was taking PhD courses in chemical engineering) and some functional skills in programming. From there, I first dove deep into one type of machine learning (Gaussian processes) along with general ML practice (how to set up ML experiments in order to evaluate your models) because that was what I needed for my project. I learned mostly online and by reading papers, but I also took one class on data analysis for biologists that wasn’t ML-focused but did cover programming and statistical thinking. Later, I took a linear algebra class, an ML survey class, and an advanced topics class on structured learning at Caltech. Those helped me obtain a broad knowledge of ML, and then I’ve gained deeper understandings of some subfields that interest me or are especially relevant by reading papers closely (chasing down references and anything I don’t understand and/or implementing the core algorithms myself).

成为VIP会员查看完整内容
0
47

We propose a Bayesian convolutional neural network built upon Bayes by Backprop and elaborate how this known method can serve as the fundamental construct of our novel, reliable variational inference method for convolutional neural networks. First, we show how Bayes by Backprop can be applied to convolutional layers where weights in filters have probability distributions instead of point-estimates; and second, how our proposed framework leads with various network architectures to performances comparable to convolutional neural networks with point-estimates weights. In the past, Bayes by Backprop has been successfully utilised in feedforward and recurrent neural networks, but not in convolutional ones. This work symbolises the extension of the group of Bayesian neural networks which encompasses all three aforementioned types of network architectures now.

0
18
下载
预览
小贴士
相关资讯
机器学习线性代数速查
机器学习研究会
12+阅读 · 2018年2月25日
五个精彩实用的自然语言处理资源
机器学习研究会
5+阅读 · 2018年2月23日
【推荐】深度学习情感分析综述
机器学习研究会
54+阅读 · 2018年1月26日
【资源】15个在线机器学习课程和教程
专知
6+阅读 · 2017年12月22日
【论文】深度学习的数学解释
机器学习研究会
8+阅读 · 2017年12月15日
资源|斯坦福课程:深度学习理论!
全球人工智能
14+阅读 · 2017年11月9日
【论文】图上的表示学习综述
机器学习研究会
9+阅读 · 2017年9月24日
相关VIP内容
专知会员服务
44+阅读 · 2020年3月19日
专知会员服务
81+阅读 · 2020年3月18日
【斯坦福大学Chelsea Finn-NeurIPS 2019】贝叶斯元学习
专知会员服务
34+阅读 · 2019年12月17日
强化学习最新教程,17页pdf
专知会员服务
74+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
47+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
54+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
67+阅读 · 2019年9月24日
相关论文
A Survey on Bayesian Deep Learning
Hao Wang,Dit-Yan Yeung
46+阅读 · 2020年7月2日
Keyulu Xu,Jingling Li,Mozhi Zhang,Simon S. Du,Ken-ichi Kawarabayashi,Stefanie Jegelka
8+阅读 · 2020年2月15日
Mingzhen Li,Yi Liu,Xiaoyan Liu,Qingxiao Sun,Xin You,Hailong Yang,Zhongzhi Luan,Depei Qian
9+阅读 · 2020年2月6日
A Survey of the Usages of Deep Learning in Natural Language Processing
Daniel W. Otter,Julian R. Medina,Jugal K. Kalita
77+阅读 · 2019年9月11日
Advances in Natural Language Question Answering: A Review
K. S. D. Ishwari,A. K. R. R. Aneeze,S. Sudheesan,H. J. D. A. Karunaratne,A. Nugaliyadde,Y. Mallawarrachchi
4+阅读 · 2019年4月10日
Chunwei Tian,Yong Xu,Lunke Fei,Ke Yan
4+阅读 · 2018年10月11日
Thomas Elsken,Jan Hendrik Metzen,Frank Hutter
10+阅读 · 2018年9月5日
Felix Laumann,Kumar Shridhar,Adrian Llopart Maurin
18+阅读 · 2018年6月27日
Tom Young,Devamanyu Hazarika,Soujanya Poria,Erik Cambria
7+阅读 · 2018年2月20日
Top