This work presents a mitosis detection method with only one vanilla Convolutional Neural Network (CNN). Our approach consists of two steps: given an image, we first apply a CNN using a sliding window technique to extract patches that have mitoses; we then calculate each extracted patch's class activation map to obtain the mitosis's precise location. To increase the model generalizability, we train the CNN with a series of data augmentation techniques, a loss that copes with noise-labeled images, and an active learning strategy. Our approach achieved an F1 score of 0.7323 with an EfficientNet-b3 model in the preliminary test phase of the MIDOG 2022 challenge.
翻译:这项工作提供了一种分离检测方法,只有一个香草革命神经网络(CNN) 。 我们的方法包括两个步骤: 给一个图像, 我们首先使用一个有线电视新闻网, 使用滑动窗口技术提取有线虫的补丁; 然后计算每个提取的补丁的分类激活地图, 以获得丝虫的确切位置 。 为了提高模型的可概括性, 我们用一系列数据增强技术对CNN进行培训, 这是一种适应噪音标签图像的损失, 以及一项积极的学习策略。 我们的方法在MIDOG 2022 挑战的初步测试阶段, 达到了F1分的0.7323分和高效Net-b3 模型。