EEG decoding systems based on deep neural networks have been widely used in decision making of brain computer interfaces (BCI). Their predictions, however, can be unreliable given the significant variance and noise in EEG signals. Previous works on EEG analysis mainly focus on the exploration of noise pattern in the source signal, while the uncertainty during the decoding process is largely unexplored. Automatically detecting and reducing such decoding uncertainty is important for BCI motor imagery applications such as robotic arm control etc. In this work, we proposed an uncertainty estimation and reduction model (UNCER) to quantify and mitigate the uncertainty during the EEG decoding process. It utilized a combination of dropout oriented method and Bayesian neural network for uncertainty estimation to incorporate both the uncertainty in the input signal and the uncertainty in the model parameters. We further proposed a data augmentation based approach for uncertainty reduction. The model can be integrated into current widely used EEG neural decoders without change of architecture. We performed extensive experiments for uncertainty estimation and its reduction in both intra-subject EEG decoding and cross-subject EEG decoding on two public motor imagery datasets, where the proposed model achieves significant improvement both on the quality of estimated uncertainty and the effectiveness of uncertainty reduction.
翻译:以深神经网络为基础的EEG解码系统在大脑计算机界面(BCI)的决策过程中被广泛使用。但是,由于EEG信号中的显著差异和噪音,它们的预测可能不可靠。EEEG分析以前的工作主要侧重于源信号中的噪音模式的探索,而解码过程中的不确定性在很大程度上没有探索。自动探测和减少这种解码不确定性对于BCI运动图像应用如机器人手臂控制等非常重要。在这项工作中,我们提议了一个不确定性估计和减少模型,以量化和减轻EEEEG解码过程中的不确定性。它利用了以辍学为导向的方法和巴耶西亚神经网络的不确定性估计组合,将输入信号中的不确定性和模型参数中的不确定性都包括在内。我们进一步提议了基于数据增强的方法,以减少不确定性。该模型可以在不改变结构的情况下纳入目前广泛使用的EEEG 神经解码器解码器应用中。我们在EEG解码和跨子 EEG解码过程中都进行了广泛的实验,以量化和减轻不确定性。在两种公共汽车图像数据减少的模型质量方面实现显著的改进。