We study properties of two resampling scenarios: Conditional Randomisation and Conditional Permutation schemes, which are relevant for testing conditional independence of discrete random variables $X$ and $Y$ given a random variable $Z$. Namely, we investigate asymptotic behaviour of estimates of a vector of probabilities in such settings, establish their asymptotic normality and ordering between asymptotic covariance matrices. The results are used to derive asymptotic distributions of the empirical Conditional Mutual Information in those set-ups. Somewhat unexpectedly, the distributions coincide for the two scenarios, despite differences in the asymptotic distributions of the estimates of probabilities. We also prove validity of permutation p-values for the Conditional Permutation scheme. The above results justify consideration of conditional independence tests based on resampled p-values and on the asymptotic chi-square distribution with an adjusted number of degrees of freedom. We show in numerical experiments that when the ratio of the sample size to the number of possible values of the triple exceeds 0.5, the test based on the asymptotic distribution with the adjustment made on a limited number of permutations is a viable alternative to the exact test for both the Conditional Permutation and the Conditional Randomisation scenarios. Moreover, there is no significant difference between the performance of exact tests for Conditional Permutation and Randomisation schemes, the latter requiring knowledge of conditional distribution of $X$ given $Z$, and the same conclusion is true for both adaptive tests.


翻译:我们研究了两种重抽样方案的性质:条件随机化和条件置换方案,这与测试给定随机变量$Z$的离散随机变量$X$和$Y$之间的条件独立性密切相关。具体而言,我们研究了在这种设置下概率估计的渐近行为,建立了它们的渐近正态性和渐近协方差矩阵之间的顺序关系。结果用于导出在这些设置中经验条件互信息的渐近分布。值得注意的是,尽管估计概率的渐近分布不同,两种情况的分布相同。我们还证明了用于条件置换方案的置换p值的有效性。上述结果证明了基于重抽样p值和带有调整自由度的渐近卡方分布的条件独立性检验的合理性。我们在数值实验中表明,当样本大小与三元组可能值的数量之比大于0.5时,基于在有限置换数量上进行调整的渐近分布的测试是精确测试的一个可行的替代方法,适用于条件置换和条件随机化方案。此外,对于自适应测试,精确测试的表现没有显著差异,后者需要知道$X$在给定$Z$ 的条件分布。

0
下载
关闭预览

相关内容

【干货书】工程和科学中的概率和统计,
专知会员服务
57+阅读 · 2022年12月24日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
18+阅读 · 2019年2月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月30日
VIP会员
相关VIP内容
【干货书】工程和科学中的概率和统计,
专知会员服务
57+阅读 · 2022年12月24日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员