Many forecasting applications have a limited distributed target variable, which is zero for most observations and positive for the remaining observations. In the econometrics literature, there is much research about statistical model building for limited distributed target variables. Especially, there are two component model approaches, where one model is build for the probability of the target to be positive and one model for the actual value of the target, given that it is positive. However, the econometric literature focuses on effect estimation and does not provide theory for predictive modeling. Nevertheless, some concepts like the two component model approach and Heckmann's sample selection correction also appear in the predictive modeling literature, without a sound theoretical foundation. In this paper, we theoretically analyze predictive modeling for limited dependent variables and derive best practices. By analyzing various real-world data sets, we also use the derived theoretical results to explain which predictive modeling approach works best on which application.


翻译:许多预测应用程序具有有限的分布式目标变量,其中大多数观察值为零,剩余观察值为正。在计量经济学文献中,有关有限分布目标变量的统计模型构建有很多研究。特别是,有两个组件模型方法,其中一个模型用于目标为正的概率,另一个模型用于目标变量的实际值,假设目标变量为正。然而,计量经济学文献重点关注的是效应估计,没有为预测建模提供理论。尽管如此,在预测建模文献中也出现了一些概念,如两个组件模型方法和 Heckmann 的样本选择校正,但没有坚实的理论基础。在本文中,我们对有限依赖变量的预测建模进行了理论分析,并推导出最佳实践。通过分析各种真实世界的数据集,我们还使用推导出的理论结果来解释哪种预测建模方法在哪种应用中效果最好。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
原创 | Attention Modeling for Targeted Sentiment
黑龙江大学自然语言处理实验室
25+阅读 · 2017年11月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年10月9日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
原创 | Attention Modeling for Targeted Sentiment
黑龙江大学自然语言处理实验室
25+阅读 · 2017年11月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员