Supervised training of deep neural networks on pairs of clean image and noisy measurement achieves state-of-the-art performance for many image reconstruction tasks, but such training pairs are usually difficult to collect. A variety of self-supervised methods enable training based on noisy measurements only, without clean images. In this work, we investigate the cost of self-supervised training by characterizing its sample complexity. We focus on a class of self-supervised methods that enable the computation of unbiased estimates of gradients of the supervised loss, including noise2noise methods. We first analytically show that a model trained with such self-supervised training is as good as the same model trained in a supervised fashion, but self-supervised training requires more examples than supervised training. We then study self-supervised denoising and accelerated MRI empirically and characterize the cost of self-supervised training in terms of the number of additional samples required, and find that the performance gap between self-supervised and supervised training vanishes as a function of the training examples, at a problem-dependent rate, as predicted by our theory.
翻译:暂无翻译