项目名称: 有机材料中光电转换过程的动力学研究

项目编号: No.11474218

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 赵晖

作者单位: 同济大学

项目金额: 80万元

中文摘要: 材料是当今科学研究中最为关心的课题,有机材料作为新型的光电功能材料,具有可选择性强、成本低、制备简单等独特的优点。与无机材料不同,有机高分子材料具有独特的准一维π电子共轭键结构,电子的自陷使得有机材料中含有孤子、极化子、双极化子等电荷、自旋各异的载流子以及激子、双激子等与发光有关的载能子。这些元激发在光电转换过程中起着至关重要的作用,并由此产生一系列新颖的光电现象。本项目基于有机材料的独特性质,从静态的能谱结构和动态的分子动力学角度出发,研究共轭键结构、量子声子涨落,特别是电子关联效应如何影响各种元激发的生成、输运、复合、拆分以及相互的转换过程。结合相关实验,理解电子关联在光电(电光)转换过程中的作用,发掘全新的光电转换现象,探寻光电高效转换的新机理。

中文关键词: 有机材料;强关联电子;动力学演化;光电转换;共轭键结构

英文摘要: Materials science is a key discipline in today's world, the cheap and easy processing, and almost infinite chemical-tune capability make organic materials used in optoelectronic devices very attractive both for application and science purpose. Different from their inorganic counterparts, organic polymer materials have the quasi-one-dimensional π electron-conjugation bond structure. Due to the self-trapping of electron,the charge carriers in organic materials are self-trapped elementary excitations, such as soliton, polaron , bipolaron, and the photoluminescence particles, such as exciton and biexciton. These elementary excitations plays a crucial role in the photoelectric conversion, resulting in a series of novel photoelectric phenomena. The project is based on the unique nature of organic materials to investigate how the conjugation bond structure, electron correlation and phonon quantum fluctuations react to the energy spectra and photoelectric conversion process, to clarify the electron correlation effects on the formation, transportation, collision, recombination and conversion of different elementary excitations by using the molecular dynamics method. Together with the help of related experiments,understanding the photoelectric conversion process, searching for novel photoelectric conversion phenomena, finding out new mechanism of high-efficient photoelectric conversion.

英文关键词: organic material;strongly correlated electrons;dynamical evolution;photoelectric conversion;conjugated bond structure

成为VIP会员查看完整内容
0

相关内容

专知会员服务
43+阅读 · 2021年9月7日
【干货书】健康和生命科学的数据文本处理,107页pdf
专知会员服务
42+阅读 · 2021年7月11日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
15+阅读 · 2021年5月30日
专知会员服务
33+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
97+阅读 · 2021年3月25日
【书籍】深度学习框架:PyTorch入门与实践(附代码)
专知会员服务
165+阅读 · 2019年10月28日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
62+阅读 · 2020年7月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Transformers in Medical Image Analysis: A Review
Arxiv
40+阅读 · 2022年2月24日
小贴士
相关主题
相关VIP内容
专知会员服务
43+阅读 · 2021年9月7日
【干货书】健康和生命科学的数据文本处理,107页pdf
专知会员服务
42+阅读 · 2021年7月11日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
15+阅读 · 2021年5月30日
专知会员服务
33+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
97+阅读 · 2021年3月25日
【书籍】深度学习框架:PyTorch入门与实践(附代码)
专知会员服务
165+阅读 · 2019年10月28日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员