In recent years, phase retrieval has received much attention in many fields including statistics, applied mathematics and optical engineering. In this paper, we propose an efficient algorithm, termed Subspace Phase Retrieval (SPR), which can accurately recover a $n$-dimensional $k$-sparse complex-valued signal given its $\mathcal O(k\log^3 n)$ magnitude-only Gaussian samples. This offers a significant improvement over many existing methods that require $\mathcal O(k^2 \log n)$ or more samples. Also, our sampling complexity is nearly optimal as it is very close to the fundamental limit $\mathcal O(k \log \frac{n}{k})$ for sparse phase retrieval.
翻译:近年来,阶段检索在许多领域,包括统计、应用数学和光学工程等,都得到了很大关注。在本文中,我们建议了一种高效算法,称为子空间阶段检索(SPR),该算法可以精确地回收一个以美元表示的以美元表示的以美元表示的量表示的O(k\log3 n)美元表示的量表示的复杂信号。这大大改进了许多现有方法,这些方法需要美元表示的O(k%2\log n)美元或更多样品。此外,我们的取样复杂性也几乎是最佳的,因为它非常接近用于稀薄阶段检索的基本限值$\mathcal O(k\log\frac{n\k}美元。</s>