Given a collection of vertex-aligned networks and an additional label-shuffled network, we propose procedures for leveraging the signal in the vertex-aligned collection to recover the labels of the shuffled network. We consider matching the shuffled network to averages of the networks in the vertex-aligned collection at different levels of granularity. We demonstrate both in theory and practice that if the graphs come from different network classes, then clustering the networks into classes followed by matching the new graph to cluster-averages can yield higher fidelity matching performance than matching to the global average graph. Moreover, by minimizing the graph matching objective function with respect to each cluster average, this approach simultaneously classifies and recovers the vertex labels for the shuffled graph.
翻译:根据一个顶层对齐网络和另外一个标签覆盖网络的集合,我们建议使用顶层对齐收集中的信号的程序,以收回打乱网络的标签。我们考虑将打乱的网络与顶层对齐收集中不同层次颗粒的网络的平均数相匹配。我们在理论和实践上都表明,如果图表来自不同的网络类别,然后将网络组合成类,然后将新图表与群集平均值相匹配,这样可以产生比全球平均图表更准确的匹配性能。此外,通过将图表对齐目标功能与每个组群平均功能的最小化,这种方法可以同时分类并恢复打乱图的顶层标签。