In this work, we propose a multi-view image translation framework, which can translate contrast-enhanced T1 (ceT1) MR imaging to high-resolution T2 (hrT2) MR imaging for unsupervised vestibular schwannoma and cochlea segmentation. We adopt two image translation models in parallel that use a pixel-level consistent constraint and a patch-level contrastive constraint, respectively. Thereby, we can augment pseudo-hrT2 images reflecting different perspectives, which eventually lead to a high-performing segmentation model. Our experimental results on the CrossMoDA challenge show that the proposed method achieved enhanced performance on the vestibular schwannoma and cochlea segmentation.
翻译:在这项工作中,我们提出了一种多视角图像转换框架,可以将增强T1(ceT1)磁共振成像转换为高分辨率T2(hrT2)磁共振成像,用于无监督的听神经瘤和耳蜗分割。我们采用并行的两个图像转换模型,分别使用像素级一致约束和基于补丁的对比约束。通过这样,我们可以增强反映不同视角的伪hrT2图像,最终带来高性能的分割模型。我们在CrossMoDA挑战赛上的实验结果表明,所提出的方法在听神经瘤和耳蜗分割方面取得了优异的表现。