In this work, we propose a multi-view image translation framework, which can translate contrast-enhanced T1 (ceT1) MR imaging to high-resolution T2 (hrT2) MR imaging for unsupervised vestibular schwannoma and cochlea segmentation. We adopt two image translation models in parallel that use a pixel-level consistent constraint and a patch-level contrastive constraint, respectively. Thereby, we can augment pseudo-hrT2 images reflecting different perspectives, which eventually lead to a high-performing segmentation model. Our experimental results on the CrossMoDA challenge show that the proposed method achieved enhanced performance on the vestibular schwannoma and cochlea segmentation.


翻译:在这项工作中,我们提出了一种多视角图像转换框架,可以将增强T1(ceT1)磁共振成像转换为高分辨率T2(hrT2)磁共振成像,用于无监督的听神经瘤和耳蜗分割。我们采用并行的两个图像转换模型,分别使用像素级一致约束和基于补丁的对比约束。通过这样,我们可以增强反映不同视角的伪hrT2图像,最终带来高性能的分割模型。我们在CrossMoDA挑战赛上的实验结果表明,所提出的方法在听神经瘤和耳蜗分割方面取得了优异的表现。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2020年8月3日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
Exploring Visual Relationship for Image Captioning
Arxiv
14+阅读 · 2018年9月19日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员