To drive safely in complex traffic environments, autonomous vehicles need to make an accurate prediction of the future trajectories of nearby heterogeneous traffic agents (i.e., vehicles, pedestrians, bicyclists, etc). Due to the interactive nature, human drivers are accustomed to infer what the future situations will become if they are going to execute different maneuvers. To fully exploit the impacts of interactions, this paper proposes a ego-planning guided multi-graph convolutional network (EPG-MGCN) to predict the trajectories of heterogeneous agents using both historical trajectory information and ego vehicle's future planning information. The EPG-MGCN first models the social interactions by employing four graph topologies, i.e., distance graphs, visibility graphs, planning graphs and category graphs. Then, the planning information of the ego vehicle is encoded by both the planning graph and the subsequent planning-guided prediction module to reduce uncertainty in the trajectory prediction. Finally, a category-specific gated recurrent unit (CS-GRU) encoder-decoder is designed to generate future trajectories for each specific type of agents. Our network is evaluated on two real-world trajectory datasets: ApolloScape and NGSIM. The experimental results show that the proposed EPG-MGCN achieves state-of-the-art performance compared to existing methods.


翻译:为了在复杂的交通环境中安全行驶,自主驾驶汽车需要准确预测周边异质交通代理(如车辆、行人、自行车等)的未来轨迹。由于交互性的本质,人类驾驶员习惯于推断不同的操作将会导致未来的情况。为了充分利用交互的影响,本文提出了基于自主规划引导的多图卷积网络(EPG-MGCN),利用历史轨迹信息和自主车辆未来的规划信息来预测异质代理的轨迹。 EPG-MGCN首先通过使用4个图拓扑结构对社交互动进行建模,即距离图、可见图、规划图和类别图。然后,自主车辆的规划信息通过规划图和后续的规划引导预测模块进行编码,以减少轨迹预测中的不确定性。最后,设计了一种类别特定的门控循环单元(CS-GRU)编码器-解码器,用于针对每种特定类型的代理生成未来轨迹。我们的网络在两个真实轨迹数据集ApolloScape和NGSIM上进行评估。实验结果表明,所提出的EPG-MGCN方法相比现有方法具有最先进的性能。

0
下载
关闭预览

相关内容

JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
WSDM2022推荐算法部分论文整理(附直播课程)
机器学习与推荐算法
0+阅读 · 2022年7月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
WSDM2022推荐算法部分论文整理(附直播课程)
机器学习与推荐算法
0+阅读 · 2022年7月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员