推荐系统作为AI最成功和最重要的应用之一,帮助消费者更容易地找到相关的或感兴趣的内容、商品或者服务。
对于想学习推荐系统的同学,我整理了WSDM2022最新的包括了序列推荐、跨域推荐、去偏推荐、联邦推荐等13篇推荐系统论文,供大家提前领略学术前沿趋势与牛人的最新想法。完整的WSDM2022推荐算法整理可移步WSDM2022推荐系统论文集锦。
01.RecGURU: Adversarial Learning of Generalized User Representations for Cross-Domain Recommendation
02.Personalized Transfer of User Preferences for Cross-domain Recommendation
03.Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation
04.Heterogeneous Global Graph Neural Networks for Personalized Session-based Recommendation
05.It Is Different When Items Are Older: Debiasing Recommendations When Selection Bias and User Preferences are Dynamic
06.Fighting Mainstream Bias in Recommender Systems via Local Fine Tuning
07.PipAttack: Poisoning Federated Recommender Systems for Manipulating Item Promotion
08.Profiling the Design Space for Graph Neural Networks based Collaborative Filtering
09.Modeling Scale-free Graphs with Hyperbolic Geometry for Knowledge-aware Recommendation
10.Enumerating Fair Packages for Group Recommendations
11.Long Short-Term Temporal Meta-learning in Online Recommendation
12.A Cooperative-Competitive Multi-Agent Framework for Auto-bidding in Online Advertising
13.Choosing the Best of All Worlds: Accurate, Diverse, and Novel Recommendations through Multi-Objective Reinforcement Learning
那么多推荐算法论文,需要怎么杨去精读和泛读呢,为了能让你对推荐系统中的各个部分的算法有一个总体的认识,我推荐你来听Pirtuo老师的《欢迎来到推荐的世界》直播课。
—— 老师介绍 ——
—— 直播大纲 ——
7月21日 晚上20:00
-
推荐系统概述
召回算法概述
排序算法概述
论文泛读
学习路径
7月22日 晚上20:00
已预约的同学,还额外附赠2022推荐系统paper13篇~