Classical linear statistical models, like the first-order auto-regressive (AR) model, are commonly used as channel model in high-mobility scenarios. However, compared to sub-6G, the effect of Doppler frequency shifts is more significant at millimeter wave (mmWave) frequencies, and the effectiveness of the statistical channel model in high-mobility mmWave scenarios should be reconsidered. In this paper, we investigate the channel estimation for mmWave multiple-input multiple-output-(MIMO) orthogonal frequency division multiplexing (OFDM) systems in high-mobility scenarios, with the focus on the comparison between the instantaneous channel model and the statistical channel model. For the instantaneous model, by leveraging the low-rank nature of mmWave channels and the multidimensional characteristics of MIMO-OFDM signals across space, time, and frequency, the received signals are structured as a fourth-order tensor fitting a low-rank CANDECOMP/PARAFAC (CP) model. Then, to solve the CP decomposition problem, an estimation of signal parameters via rotational invariance techniques (ESPRIT)-type decomposition based channel estimation method is proposed by exploring the Vandermonde structure of factor matrix, and the channel parameters are then estimated from the factor matrices. We analyze the uniqueness condition of the CP decomposition and develop a concise derivation of the Cramer-Rao bound (CRB) for channel parameters. Simulations show that our method outperforms the existing benchmarks. Furthermore, the results based on the wireless environment generated by Wireless InSite verify that the channel estimation based on the instantaneous channel model performs better than that based on the statistical channel model. Therefore, the instantaneous channel model is recommended for designing channel estimation algorithm for mmWave systems in high-mobility scenarios.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2022年10月27日
Arxiv
35+阅读 · 2021年1月27日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员