We introduce new finite-dimensional spaces specifically designed to approximate the solutions to high-frequency Helmholtz problems with smooth variable coefficients in dimension $d$. These discretization spaces are spanned by Gaussian coherent states, that have the key property to be localised in phase space. We carefully select the Gaussian coherent states spanning the approximation space by exploiting the (known) micro-localisation properties of the solution. For a large class of source terms (including plane-wave scattering problems), this choice leads to discrete spaces that provide a uniform approximation error for all wavenumber $k$ with a number of degrees of freedom scaling as $k^{d-1/2}$, which we rigorously establish. In comparison, for discretization spaces based on (piecewise) polynomials, the number of degrees of freedom has to scale at least as $k^d$ to achieve the same property. These theoretical results are illustrated by one-dimensional numerical examples, where the proposed discretization spaces are coupled with a least-squares variational formulation.
翻译:我们引入了新的有限维度空间, 专门设计这些空间, 目的是以平滑的可变系数来比较高频Helmholtz问题的解决方案。 这些离散空间由高斯的一致状态覆盖, 这些状态具有关键属性, 将在相位空间中定位。 我们仔细选择高斯的一致状态, 通过利用解决方案的( 已知的) 微本地化特性来覆盖近距离空间。 对于一大批源术语( 包括平流波散布问题), 这种选择导致离散空间, 为所有波提供统一的近似错误, 以美元计数, 以美元计数自由缩放度为$k ⁇ d-1/2} 。 相比之下, 对于基于( 单位) 聚点空间的离散空间, 自由度的数量至少以 $kd$ 表示, 以获得相同的属性。 这些理论结果以一维数字示例为例, 其中提议的离散空间与最小的变异配制相配合。