项目名称: 5d金属Ir及其合金纳米颗粒、纳米线的电、磁性能研究
项目编号: No.51471185
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 一般工业技术
项目作者: 杨海涛
作者单位: 中国科学院物理研究所
项目金额: 85万元
中文摘要: 由于5d 过渡金属原子比3d金属原子具有更大的自旋和轨道角动量、自旋轨道耦合系数,在纳米尺度其d电子受到强烈的物理限制作用和表面存在大量悬挂键,使得5d过渡金属纳米材料具有许多独特的电学、磁学、光学等性质,因而对5d金属及5d-3d过渡金属合金纳米材料的深入研究具有重要的科学意义,可极大促进5d过渡金属纳米材料在纳电子器件中的应用研究。本研究拟用化学方法制备尺寸在1-10nm的5d金属Ir及Ir-Fe(Co)合金纳米颗粒和纳米线,并在其表面吸附不同小分子配位基团,系统研究尺寸、形状、表面键合情况对其晶体结构、稳定性、磁结构、静磁性能、动力学磁化性能、自旋输运性质的影响,综合分析实验结果和基于密度泛函理论的第一性原理计算的电子态密度等信息,力图揭示具有较大自旋-轨道耦合作用的5d过渡金属Ir及其合金在纳米尺度的奇特电学、磁学性质,探讨其在自旋电子器件、工作于GHz频段的微纳电子器件的应用。
中文关键词: 磁性纳米材料;磁性能;高频性能;自旋相关输运
英文摘要: Since 5d transition metal atoms have larger spin angular momentum,orbit angular momentum, spin-orbit coupling coefficient,strong phycical confinement effect on d electrons and a large amount of dangling bond on the surface at nanoscale,5d transition metal nanomatrials have many particular electrical,magnetic, and optical properties.The deeper investigation on the 5d and 5d-3d alloy nanomaterials is very significant for the basic scientific research and promote their application research in micro- or nano-electronics devices. In this project,1-10 nm Ir of 5d transition metal and Ir-Fe(Co) alloy nanoparticles and nanowires will be synthesized by chemical methods.The as-prepared nanoparticles and nanowires will subsequently be treated by different small ligands to modify the surface bonding states.The influence of size, shape, and surface bonding states on the crystalline structures, stability, magnetic structures, static magnetic properties, dynamical magnetization properties, and spin-dependent transport properties will systematically be investigated.Based on the experimental results and density of states from the first-principles calculation,the particular electrical and magnetic properties of 5d transition metal and its alloy nanomatrials with large spin-orbit coupling effect will be revealed. Morever, the way to apply such interesting nanomaterials in spintronics devices and micro- or nano-electronics working in GHz range will be explored.
英文关键词: magnetic nanomaterials;magnetic properties;high-frequency properties;spin-dependent transport