We present a butterfly-compressed representation of the Hadamard-Babich (HB) ansatz for the Green's function of the high-frequency Helmholtz equation in smooth inhomogeneous media. For a computational domain discretized with $N_v$ discretization cells, the proposed algorithm first solves and tabulates the phase and HB coefficients via eikonal and transport equations with observation points and point sources located at the Chebyshev nodes using a set of much coarser computation grids, and then butterfly compresses the resulting HB interactions from all $N_v$ cell centers to each other. The overall CPU time and memory requirement scale as $O(N_v\log^2N_v)$ for any bounded 2D domains with arbitrary excitation sources. A direct extension of this scheme to bounded 3D domains yields an $O(N_v^{4/3})$ CPU complexity, which can be further reduced to quasi-linear complexities with proposed remedies. The scheme can also efficiently handle scattering problems involving inclusions in inhomogeneous media. Although the current construction of our HB integrator does not accommodate caustics, the resulting HB integrator itself can be applied to certain sources, such as concave-shaped sources, to produce caustic effects. Compared to finite-difference frequency-domain (FDFD) methods, the proposed HB integrator is free of numerical dispersion and requires fewer discretization points per wavelength. As a result, it can solve wave-propagation problems well beyond the capability of existing solvers. Remarkably, the proposed scheme can accurately model wave propagation in 2D domains with 640 wavelengths per direction and in 3D domains with 54 wavelengths per direction on a state-the-art supercomputer at Lawrence Berkeley National Laboratory.


翻译:我们展示了Hadamard-Babich (HB) ansatz 的蝴蝶压缩代表, 用于 Green 的功能。 在平滑的不相容媒体中, 高频 Helmholtz 方程式。 对于使用 $N_ v$ 离散的单元格分解的计算域域, 提议的算法首先通过 eikonal 和 运输方程式解决并制表解阶段和 HB 系数。 位于 Chebyshev 节点的观察点和点源将一个 $( N_ vider4/3} ) 的观察点和点源放在 Chebyshev 节点, 然后蝴蝶压缩 HB 的相互作用, 从所有 $N_ v$ 的超频频度单元格中心到其他媒体中心。 总体的 CPU 时间和记忆方向是 $O( N_ v\ mider) 6/ 3} CPU 的直径可进一步降低到 直线 复杂度 。 。 这个方案还可以有效地处理 Hal deal deal deal deal demodeal 问题, 虽然在 rode rodeal rodustration rodudeal rodudeal 中, rodustral rodude 中, 在 roducal deal deal deal deal deal develtal deal develtal deal deal develtal develtal develtal develd rod rod rodal develd rod rod rod rod rod 。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月7日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员