We prove two lower bounds for the complexity of non-log-concave sampling within the framework of Balasubramanian et al. (2022), who introduced the use of Fisher information (FI) bounds as a notion of approximate first-order stationarity in sampling. Our first lower bound shows that averaged LMC is optimal for the regime of large FI by reducing the problem of finding stationary points in non-convex optimization to sampling. Our second lower bound shows that in the regime of small FI, obtaining a FI of at most $\varepsilon^2$ from the target distribution requires $\text{poly}(1/\varepsilon)$ queries, which is surprising as it rules out the existence of high-accuracy algorithms (e.g., algorithms using Metropolis-Hastings filters) in this context.
翻译:在Balasubramanian等人(2022年)的框架内,我们证明非混凝土取样的复杂性有两个较低的界限,Balasubramanian等人(2022年)将渔业信息(FI)的界限作为采样中大约一阶固定性的概念加以使用。我们的第一个较低的界限表明,平均LMC对大型FI制度来说是最佳的,可以减少在非凝固物优化中寻找固定点以进行采样的问题。我们的第二个较低的界限表明,在小型FI制度下,从目标分布中获得的FI最多为$\varepsilon ⁇ 2美元需要$\text{poly}(1/\varepsilon)的查询,这令人惊讶,因为它排除了在这方面存在高精度算算法(例如使用大都会-哈斯过滤器算法)的可能性。