The RV coefficient measures the similarity between two multivariate configurations, and its significance testing has attracted various proposals in the last decades. We present a new approach, the invariant orthogonal integration, permitting to obtain the exact first four moments of the RV coefficient under the null hypothesis. It consists in averaging along the Haar measure the respective orientations of the two configurations, and can be applied to any multivariate setting endowed with Euclidean distances between the observations. Our proposal also covers the weighted setting of observations of unequal importance, where the exchangeability assumption, justifying the usual permutation tests, breaks down. The proposed RV moments express as simple functions of the kernel eigenvalues occurring in the weighted multidimensional scaling of the two configurations. The expressions for the third and fourth moments seem original. The first three moments can be obtained by elementary means, but computing the fourth moment requires a more sophisticated apparatus, the Weingarten calculus for orthogonal groups. The central role of standard kernels and their spectral moments is emphasized.
翻译:RV 系数测量两个多变量配置之间的相似性, 以及它的意义测试在过去几十年中吸引了各种建议。 我们提出了一个新方法, 即无差异的正方形整合, 允许在无效假设下获得 RV 系数的准确前四个时刻。 它包括沿Haar 平均测量两个组合的各自方向, 并可以适用于任何具有观测时间间距的多变量设置。 我们的提案还涵盖了不平等重要性观测的加权设置, 即互换性假设、 通常的对调测试的合理性、 崩溃。 提议的 RV 时间将两种配置的加权多层面缩放中出现的内核元值的简单功能表达出来。 第三和第四个时刻的表达形式看起来是原创的。 前三个时刻可以通过基本手段获得, 但计算第四个时刻需要更复杂的仪器, 即用于分层组的 Weingarten 计算器。 标准内核及其光时的中心作用得到了强调 。