We present a data-driven approach to characterizing nonidentifiability of a model's parameters and illustrate it through dynamic as well as steady kinetic models. By employing Diffusion Maps and their extensions, we discover the minimal combinations of parameters required to characterize the output behavior of a chemical system: a set of effective parameters for the model. Furthermore, we introduce and use a Conformal Autoencoder Neural Network technique, as well as a kernel-based Jointly Smooth Function technique, to disentangle the redundant parameter combinations that do not affect the output behavior from the ones that do. We discuss the interpretability of our data-driven effective parameters, and demonstrate the utility of the approach both for behavior prediction and parameter estimation. In the latter task, it becomes important to describe level sets in parameter space that are consistent with a particular output behavior. We validate our approach on a model of multisite phosphorylation, where a reduced set of effective parameters (nonlinear combinations of the physical ones) has previously been established analytically.
翻译:我们提出一种数据驱动的方法来说明模型参数的不可识别性,并通过动态和稳定的动能模型来加以说明。我们通过使用扩散图及其扩展,发现了化学系统输出行为特征所需的最低参数组合:模型的一套有效参数。此外,我们引入并使用一种非正式自动编码神经网络技术,以及以内核为基础的联合滑动功能技术,以解析不影响从这些参数中产出行为的冗余参数组合。我们讨论了数据驱动的有效参数的可解释性,并展示了该方法在行为预测和参数估计方面的效用。在后一项任务中,必须描述与特定产出行为相一致的参数空间的等级组合。我们验证了我们在多点磷化模型上采用的方法,在多点磷化模型中,以前已经通过分析确定了一套数量较少的有效参数(物理非线性组合)。