We provide a unifying framework for $\mathcal{L}_2$-optimal reduced-order modeling for linear time-invariant dynamical systems and stationary parametric problems. Using parameter-separable forms of the reduced-model quantities, we derive the gradients of the $\mathcal{L}_2$ cost function with respect to the reduced matrices, which then allows a non-intrusive, data-driven, gradient-based descent algorithm to construct the optimal approximant using only output samples. By choosing an appropriate measure, the framework covers both continuous (Lebesgue) and discrete cost functions. We show the efficacy of the proposed algorithm via various numerical examples. Furthermore, we analyze under what conditions the data-driven approximant can be obtained via projection.
翻译:我们为线性时变动态系统和固定参数参数参数问题提供了一个统一的框架。我们使用可分参数的缩写数量来计算减缩矩阵的成本函数的梯度{L ⁇ 2$,然后允许一种非侵入性的、数据驱动的、梯度基底算法,仅使用输出样本来构建最佳的约克曼特。通过选择适当的措施,框架涵盖连续(Lebesgue)和离散的成本函数。我们通过各种数字示例来显示拟议算法的功效。此外,我们分析通过预测可以取得数据驱动的近方的条件。