In this paper, we give pointwise estimates of a Vorono\"i-based finite volume approximation of the Laplace-Beltrami operator on Vorono\"i-Delaunay decompositions of the sphere. These estimates are the basis for a local error analysis, in the maximum norm, of the approximate solution of the Poisson equation and its gradient. Here, we consider the Vorono\"i-based finite volume method as a perturbation of the finite element method. Finally, using regularized Green's functions, we derive quasi-optimal convergence order in the maximum-norm with minimal regularity requirements. Numerical examples show that the convergence is at least as good as predicted.
翻译:在本文中,我们给出基于Vorono\"i"的基于Vorono\"i"的有限体积近似值的精确估计值, 以Laplace- Beltrami操作员在Vorono\"i"i - Delunay 的球体分解为基准。 这些估计值是按最高标准对Poisson方程式及其梯度的近似溶液进行局部误差分析的基础。 这里, 我们认为Vorono\"i" 基量法是对有限元素方法的扰动。 最后, 使用常规化的Green的功能, 我们得出了以最低常规要求为最高温度的准最佳汇合顺序。 数字示例显示, 趋同至少和预测的一样好。