Graph-based semi-supervised learning methods combine the graph structure and labeled data to classify unlabeled data. In this work, we study the effect of a noisy oracle on classification. In particular, we derive the Maximum A Posteriori (MAP) estimator for clustering a Degree Corrected Stochastic Block Model (DC-SBM) when a noisy oracle reveals a fraction of the labels. We then propose an algorithm derived from a continuous relaxation of the MAP, and we establish its consistency. Numerical experiments show that our approach achieves promising performance on synthetic and real data sets, even in the case of very noisy labeled data.


翻译:基于图形的半监督的学习方法将图形结构和标签数据结合起来,对未贴标签的数据进行分类。在这项工作中,我们研究了一个吵闹的神器对分类的影响。特别是,当一个吵闹的神器透露了其中一部分标签时,我们得出了将一个学位校正的软体块模型(DC-SBM)组合起来的“最高后选(MAP)”估计值。然后我们提出一种从持续放松《世界地图》中得出的算法,我们建立了一致性。数字实验表明,我们的方法在合成和真实数据集上取得了有希望的性能,即使在非常吵闹的标签数据的情况下也是如此。

0
下载
关闭预览

相关内容

【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员