人工智能(AI)的成功应该在很大程度上归功于丰富数据的可获得性。然而,实际情况并非如此,行业中的开发人员常常面临数据不足、不完整和孤立的情况。因此,联邦学习被提议通过允许多方在不显式共享数据的情况下协作构建机器学习模型,同时保护数据隐私,来缓解这种挑战。然而,现有的联邦学习算法主要集中在数据不需要显式标记或者所有数据都有标记的情况下。然而在现实中,我们经常会遇到这样的情况,标签数据本身是昂贵的,没有足够的标签数据供应。虽然这类问题通常通过半监督学习来解决,但据我们所知,联邦半监督学习还没有投入任何努力。在这项调查中,我们简要地总结了目前流行的半监督算法,并对联邦半监督学习做了简要的展望,包括可能的方法、设置和挑战。

成为VIP会员查看完整内容
87

相关内容

半监督学习(Semi-Supervised Learning,SSL)是模式识别和机器学习领域研究的重点问题,是监督学习与无监督学习相结合的一种学习方法。半监督学习使用大量的未标记数据,以及同时使用标记数据,来进行模式识别工作。当使用半监督学习时,将会要求尽量少的人员来从事工作,同时,又能够带来比较高的准确性,因此,半监督学习目前正越来越受到人们的重视。
最新《深度半监督学习》综述论文,43页pdf
专知会员服务
153+阅读 · 2020年6月12日
【中国人民大学】机器学习的隐私保护研究综述
专知会员服务
131+阅读 · 2020年3月25日
联邦学习最新研究趋势!
AI科技评论
52+阅读 · 2020年3月12日
破解数据孤岛壁垒,三篇论文详细解读联邦学习
AI科技评论
24+阅读 · 2019年5月7日
联邦学习或将助力IoT走出“数据孤岛”?
中国计算机学会
20+阅读 · 2019年3月16日
“联邦学习”实现“共同富裕”?来TF“共同富裕”!
中国计算机学会
5+阅读 · 2019年3月12日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Deep Co-Training for Semi-Supervised Image Segmentation
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Arxiv
22+阅读 · 2018年8月30日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关VIP内容
最新《深度半监督学习》综述论文,43页pdf
专知会员服务
153+阅读 · 2020年6月12日
【中国人民大学】机器学习的隐私保护研究综述
专知会员服务
131+阅读 · 2020年3月25日
相关论文
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Deep Co-Training for Semi-Supervised Image Segmentation
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Arxiv
22+阅读 · 2018年8月30日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
9+阅读 · 2018年3月28日
微信扫码咨询专知VIP会员