The spreading of prion proteins is at the basis of brain neurodegeneration. The paper deals with the numerical modelling of the misfolding process of $\alpha$-synuclein in Parkinson's disease. We introduce and analyze a discontinuous Galerkin method for the semi-discrete approximation of the Fisher-Kolmogorov (FK) equation that can be employed to model the process. We employ a discontinuous Galerkin method on polygonal and polyhedral grids (PolyDG) for space discretization, which allows us to accurately simulate the wavefronts typically observed in the prionic spreading. We prove stability and a priori error estimates for the semi-discrete formulation. Next, we use a Crank-Nicolson scheme to advance in time. For the numerical verification of our numerical model, we first consider a manufactured solution, and then we consider a case with wavefront propagation in two-dimensional polygonal grids. Next, we carry out a simulation of $\alpha$-synuclein spreading in a two-dimensional brain slice in the sagittal plane with a polygonal agglomerated grid that takes full advantage of the flexibility of PolyDG approximation. Finally, we present a simulation in a three-dimensional patient-specific brain geometry reconstructed from magnetic resonance images.
翻译:棱皮蛋白的传播是大脑神经衰变的基础。 纸张涉及帕金森氏病中用于帕金森氏病的 $\ alpha$- synuclein 错误翻转过程的数值模型。 我们为Fisher- Kolmogorov (FK) 等式的半分形近似法引入和分析不连续的 Galerkin 方法, 这个方法可用于模拟过程。 我们用一种不连续的 Galerkin 方法来模拟这个过程。 我们用一种不连续的 Galerkin 方法来进行空间离散化, 使我们能够准确地模拟在 pricial 扩散中通常观察到的波端。 我们证明半分立配方形配方形配制的稳定性和先验误差估计。 接下来, 我们使用一种不连续的 Gal- Nicol- Nicolsson 公式来进行半分立式的半分立方形阵列, 我们首先考虑一个在两维多边和多角度网格网格中进行波前传播的案例。 其次, 我们进行一个模拟 $\alpha- sycleinclinclein 扩散在两维的脑前端的大脑前端结构结构中进行两次的模拟, 在最后的直方平面的正方位图像模型模型模型中, 将一个成成正数的正数的正方格图像的图像的模型, 。