We propose the use of machine learning techniques to find optimal quadrature rules for the construction of stiffness and mass matrices in isogeometric analysis (IGA). We initially consider 1D spline spaces of arbitrary degree spanned over uniform and non-uniform knot sequences, and then the generated optimal rules are used for integration over higher-dimensional spaces using tensor product sense. The quadrature rule search is posed as an optimization problem and solved by a machine learning strategy based on gradient-descent. However, since the optimization space is highly non-convex, the success of the search strongly depends on the number of quadrature points and the parameter initialization. Thus, we use a dynamic programming strategy that initializes the parameters from the optimal solution over the spline space with a lower number of knots. With this method, we found optimal quadrature rules for spline spaces when using IGA discretizations with up to 50 uniform elements and polynomial degrees up to 8, showing the generality of the approach in this scenario. For non-uniform partitions, the method also finds an optimal rule in a reasonable number of test cases. We also assess the generated optimal rules in two practical case studies, namely, the eigenvalue problem of the Laplace operator and the eigenfrequency analysis of freeform curved beams, where the latter problem shows the applicability of the method to curved geometries. In particular, the proposed method results in savings with respect to traditional Gaussian integration of up to 44% in 1D, 68% in 2D, and 82% in 3D spaces.
翻译:----
我们提出了使用机器学习技术寻找等几何分析(Isogeometric Analysis, IGA)中用于构建刚度和质量矩阵的最佳数值积分规则。我们最初考虑任意阶数的1D样条空间,它们跨越了均匀和非均匀的结点序列,然后使用张量积的方式在更高维的空间中进行数值积分。数值积分规则的搜索被形式化为一个优化问题,并通过基于梯度下降的机器学习策略来求解。然而,由于优化空间是高度非凸的,搜索的成功严重依赖于积分点的数量和参数初始化。因此,我们使用动态规划策略,将参数从具有更少节点的样条空间的最优解中进行初始化。使用这种方法,我们找到了针对 spline 空间的最佳数值积分规则,当使用IGA离散化时,最多有50个均匀元素和8次多项式阶数,表现出了这种方法在这种情况下的普适性。对于非均匀分割,该方法在合理的测试用例数量内也能找到最佳规则。我们还在两个实际案例研究中评估了生成的最佳规则,分别是 Laplace 操作符的特征值问题和自由形曲线梁的固有频率分析,后者显示了该方法在曲形几何中的适用性。特别地,所提出的方法在1D中节省了高达44%,在2D中节省了高达68%,在3D中节省了高达82%的计算时间,相较于传统的高斯积分方法。