We study the distinguishability of linearized Reed-Solomon (LRS) codes by defining and analyzing analogs of the square-code and the Overbeck distinguisher for classical Reed-Solomon and Gabidulin codes, respectively. Our main results show that the square-code distinguisher works for generalized linearized Reed-Solomon (GLRS) codes defined with the trivial automorphism, whereas the Overbeck-type distinguisher can handle LRS codes in the general setting. We further show how to recover defining code parameters from any generator matrix of such codes in the zero-derivation case. For other choices of automorphisms and derivations simulations indicate that these distinguishers and recovery algorithms do not work. The corresponding LRS and GLRS codes might hence be of interest for code-based cryptography.
翻译:本文研究线性化Reed-Solomon(LRS)码的可区分性,通过定义和分析类似于方码和Overbeck鉴别器的LRS码的可区分性,分析广义线性化Reed-Solomon(GLRS)码的可区分性,用于自同构为微分零的情况下的GLRS码定义。我们的研究发现,方码鉴别器适用于由微分为零的平凡自同构定义的GLRS码,而Overbeck型鉴别器适用于LRS码的一般设置。此外,我们还展示了当微分为零的情况下如何从任何生成矩阵中恢复这些码的编码参数。 在选择其他自同构和微分时,模拟结果表明这些区分和恢复算法不起作用。因此,相应的LRS和GLRS码可能对基于编码的密码学有重要意义。