To investigate the heterogeneity in federated learning in real-world scenarios, we generalize the classic federated learning to federated hetero-task learning, which emphasizes the inconsistency across the participants in federated learning in terms of both data distribution and learning tasks. We also present B-FHTL, a federated hetero-task learning benchmark consisting of simulation dataset, FL protocols and a unified evaluation mechanism. B-FHTL dataset contains three well-designed federated learning tasks with increasing heterogeneity. Each task simulates the clients with different non-IID data and learning tasks. To ensure fair comparison among different FL algorithms, B-FHTL builds in a full suite of FL protocols by providing high-level APIs to avoid privacy leakage, and presets most common evaluation metrics spanning across different learning tasks, such as regression, classification, text generation and etc. Furthermore, we compare the FL algorithms in fields of federated multi-task learning, federated personalization and federated meta learning within B-FHTL, and highlight the influence of heterogeneity and difficulties of federated hetero-task learning. Our benchmark, including the federated dataset, protocols, the evaluation mechanism and the preliminary experiment, is open-sourced at https://github.com/alibaba/FederatedScope/tree/master/benchmark/B-FHTL
翻译:为了调查现实世界情景中联邦学习的异质性,我们推广了典型的联邦学习与联邦异性异质性异质性学习,强调在数据分配和学习任务方面,联邦异质性学习的参与者在联邦学习方面存在不一致之处。我们还提供了B-FHTL,即由模拟数据集、FL协议和统一评价机制组成的联邦异质性学习基准。B-FHTL数据集包含三个设计完善的联邦异性性性学习任务。每个任务都模拟客户不同的非IID数据和学习任务。为了确保不同FL算法之间的公平比较,B-FHTL建立一套完整的FL协议,提供高水平的API以避免隐私泄漏,并预设涵盖不同学习任务(如回归、分类、文本生成等)的最常见的评价基准。我们比较了联邦多式学习、联邦异性个人化和联邦异性化的客户性数据分析,包括B-FLL,B-FTaltal 数据库的初始学习困难和B-FTL。