Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.
翻译:分析多种来源的观测数据有助于增加统计能力,以发现治疗效果;然而,隐私考虑等实际制约因素可能会限制各数据集之间个人一级的信息分享;本文件开发了只使用不同数据集摘要一级信息的联结方法;我们的联结方法提供了对治疗效果的双有机点估计以及差异估计;我们得出了我们的联合估计数据无症状分布,显示这些分布与个人一级综合数据的相应估计数据基本相同;我们表明,为了实现这些特性,应该根据不同数据集中模型是否正确和稳定等条件调整联结方法。