Meta-learning models transfer the knowledge acquired from previous tasks to quickly learn new ones. They are trained on benchmarks with a fixed number of data points per task. This number is usually arbitrary and it is unknown how it affects performance at testing. Since labelling of data is expensive, finding the optimal allocation of labels across training tasks may reduce costs. Given a fixed budget of labels, should we use a small number of highly labelled tasks, or many tasks with few labels each? Should we allocate more labels to some tasks and less to others? We show that: 1) If tasks are homogeneous, there is a uniform optimal allocation, whereby all tasks get the same amount of data; 2) At fixed budget, there is a trade-off between number of tasks and number of data points per task, with a unique and constant optimum; 3) When trained separately, harder task should get more data, at the cost of a smaller number of tasks; 4) When training on a mixture of easy and hard tasks, more data should be allocated to easy tasks. Interestingly, Neuroscience experiments have shown that human visual skills also transfer better from easy tasks. We prove these results mathematically on mixed linear regression, and we show empirically that the same results hold for few-shot image classification on CIFAR-FS and mini-ImageNet. Our results provide guidance for allocating labels across tasks when collecting data for meta-learning.


翻译:元化学习模式将以往任务获得的知识转移给从以往任务中获得的知识, 并快速学习新任务。 他们接受基准培训, 每任务有固定数量的数据点。 这个数字通常是任意的, 并且不知道它如何影响测试的绩效。 由于数据标签费用昂贵, 找到在培训任务之间最佳分配标签的方法可能会降低成本。 根据固定的标签预算, 我们是否应该使用少量高标签任务, 或者很多任务, 每个标签很少? 我们是否应该将更多的标签分配给某些任务, 而不是其他任务? 我们显示:(1) 如果任务相同, 对所有任务都有统一的最佳分配方式, 所有任务都有相同数量的数据; (2) 在固定预算, 每任务的任务数量和数据点数量之间有一个平衡, 并且具有独特和一贯的最佳性;(3) 如果经过培训后, 更难的任务应该以较少的任务获得更多的数据;(4) 当我们使用简单和困难的任务组合的培训时, 应该将更多的数据分配给一些容易的任务? 有趣的是, 内罗科学实验表明, 人类视觉技能也比简单的任务更好地转移。 在混合线性回归分析中, 我们用这些结果来进行模拟分析, 当我们收集所有MFS- FRA的分类时,我们的经验显示, 当我们的所有结果都用于进行。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年7月3日
专知会员服务
16+阅读 · 2021年5月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
5+阅读 · 2020年3月17日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
26+阅读 · 2019年3月5日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
17+阅读 · 2018年12月10日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
5+阅读 · 2020年3月17日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
26+阅读 · 2019年3月5日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
17+阅读 · 2018年12月10日
Arxiv
7+阅读 · 2018年6月8日
Top
微信扫码咨询专知VIP会员