The overhead of non-linear functions dominates the performance of the secure multiparty computation (MPC) based privacy-preserving machine learning (PPML). This work introduces two sets of novel secure three-party computation (3PC) protocols, using additive and replicated secret sharing schemes respectively. We name the whole family of protocols as Bicoptor, its basis is a new sign determination protocol, which relies on a clever use of the truncation protocol proposed in SecureML (S&P 2017). Our 3PC sign determination protocol only requires two communication rounds, and does not involve any preprocessing. Such sign determination protocol is well-suited for computing non-linear functions in PPML, e.g. the activation function ReLU, Maxpool, and their variants. We develop suitable protocols for these non-linear functions, which form a family of GPU-friendly protocols, Bicoptor. All Bicoptor protocols only require two communication rounds without preprocessing. We evaluate the protocols using additive secret sharing under a 3-party LAN network over a public cloud, and achieve 90,000 DReLU/ReLU or 3,200 Maxpool (find the maximum value of nine inputs) operations per second. Under the same settings and environment, our ReLU protocol has a one or even two order(s) of magnitude improvement to the state-of-the-art works, Edabits (CRYPTO 2020) or Falcon (PETS 2021), respectively without batch processing.
翻译:非线性函数的间接费用在基于保密的多功能计算(MPC)基于隐私保存机学习(PPML)的安全性多功能计算(PPML)的绩效中占主导地位。这项工作引入了两套新型安全的三方计算(3PC)新协议(3PC)协议,分别使用添加和复制的保密共享计划。我们将这些非线性协议的全组命名为Bicopptor,其基础是一个新的签名确定协议,它依赖于智能使用在安全ML(S & P 2017)中提议的短程协议。我们3PC的签名确定协议只需要两轮通信,而不涉及任何预处理。这种签名确定协议适合于在PPMLL(3PC)中计算非线性功能,例如启动功能ReLU、Maxpool及其变异体。我们为这些非线性协议制定了合适的协议,它构成了对 GPU-友好协议(S & P 2017) 中提议的短程协议的组合,所有Bicottoron协议只需要两轮通信回合。我们用三方局局的加密秘密共享网络网络对公共云云进行评估,并实现90 000 DREP/REP/RELU/REU 或RU 3200级的运行。在一次最大马氏级平级程序下,在两个马氏级的顺序下,在2级平级平级平级协议下进行。