Deep Neural Network (DNN) based video analytics empowers many computer vision-based applications to achieve high recognition accuracy. To reduce inference delay and bandwidth cost for video analytics, the DNN models can be deployed on the edge nodes, which are proximal to end users. However, the processing capacity of an edge node is limited, potentially incurring substantial delay if the inference requests on an edge node is overloaded. While efforts have been made to enhance video analytics by optimizing the configurations on a single edge node, we observe that multiple edge nodes can work collaboratively by utilizing the idle resources on each other to improve the overall processing capacity and resource utilization. To this end, we propose a Multiagent Reinforcement Learning (MARL) based approach, named as EdgeVision, for collaborative video analytics on distributed edges. The edge nodes can jointly learn the optimal policies for video preprocessing, model selection, and request dispatching by collaborating with each other to minimize the overall cost. We design an actor-critic-based MARL algorithm with an attention mechanism to learn the optimal policies. We build a multi-edge-node testbed and conduct experiments with real-world datasets to evaluate the performance of our method. The experimental results show our method can improve the overall rewards by 33.6%-86.4% compared with the most competitive baseline methods.


翻译:基于深神经网的视频分析仪(DNN)基于深神经网(DNN)的视频分析仪(DNN)使许多基于计算机的视觉应用程序能够实现高认知准确度。为减少视频分析仪的推论延迟和带宽成本,DNN模型可以部署在边缘节点上,这是对终端用户最接近的。然而,边缘节点的处理能力是有限的,如果边缘节点上的推论请求超负荷,则可能会造成重大延迟。虽然已经作出努力,通过优化单一边缘节点的配置来增强视频分析仪,我们观察到,多个边缘节点可以通过利用彼此的闲置资源开展协作,改善总体处理能力和资源利用。为此,我们建议采用多剂强化学习方法,称为Edge Vision,用于在分布边缘进行协作性视频分析。边缘节点可以共同学习视频预处理的最佳政策、模型选择的最佳政策,并通过彼此协作请求发送最佳的总体成本。我们设计了一个基于演员的MAL.6算法,同时设计了一个关注度最大的关注机制,以学习我们最佳的实验性实验方法。我们用最佳的实验性实验方法来改进整个实验性实验方法。我们的标准方法可以建立多种方法。我们用实验性实验方法来改进。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员