项目名称: Bi/BiVO4@mSiO2三元异质结构光催化降解抗生素废水的性能及机理研究

项目编号: No.21503099

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 有机化学

项目作者: 胡银

作者单位: 江西省科学院

项目金额: 21万元

中文摘要: 近年来抗生素及其衍生物所导致的水体污染和环境生态效应日趋严重。光催化氧化降解抗生素废水技术因其经济节能、环境友好等优点成为水污染治理前沿研究领域之一。本项目针对以二氧化钛为代表的传统光催化剂对太阳能利用率低以及去除抗生素废水效率偏低等关键问题,拟通过在窄禁带半导体BiVO4表面上引入介孔SiO2包覆层和原位负载金属Bi来构建高量子效率、大比表面积和高太阳能利用率的新型Bi/BiVO4@mSiO2三元异质复合光催化材料,考察其可见光下降解抗生素废水的能力。系统研究介孔SiO2壳层、金属Bi与BiVO4之间的界面复合机理及协同作用机制,揭示异质复合体系对光生电子-空穴的分离效率、界面电荷的转移速率和太阳能利用率的调控作用以及催化剂活性中心分布、活性物种的种类和微观作用规律。阐明异质复合光催化剂降解抗生素废水的机理。本研究为提高光催化去除抗生素废水效率和设计新型高效可见光光催化剂提供新思路。

中文关键词: 光催化;异质结构;抗生素废水;活性物种;作用机制

英文摘要: In recent years, the problems of water pollution and ecological environment caused by antibiotics and their derivatives are more serious than before.The photocatalytic oxidation technology for the degradation of antibiotic wastewater has become one of the research fronts in the field of water pollution control, due to its low cost, energy conservation, environmental friendliness and so on. On the problems that the traditional photocatalytic materials with TiO2 as the brandmark perform low solar energy utilization and low efficiency for the removel of antibiotic wastewater, the project intends to introduce mesoporous SiO2 coating and load Bi metallic nanoparticles in situ on the surface of BiVO4 semiconductor crystals, in order to construct novel Bi/BiVO4@mSiO2 ternary heterostructured composite with large surface area, high solar energy utilization and high quantum efficiency. Their photocatalytic performance for the degradation of antibiotic wastewater will be investigated under visible light irradiation. This project will also systematically study the interfacial combination mechanism and synergistic effect between mesoporous SiO2 shell, Bi nanoparticles and BiVO4 crystal. The purpose aims at revealing the regulating effects of heterogeneous composite on the seperation efficiency of photogenerated electron and hole, the rate of interfacial charge transfer and the solar energy utilization. The distribution of active sites, the active species and their law of function will be studied. And the photocatalytic mechanism of the degradation of antibiotic wastewater over the heterogeneous compostie will also be proposed. It will provide a new idea for improving the photocatalytic efficiency of antibiotic wastewater removal and designing novel high-efficient visible-light responsive photocatalysts.

英文关键词: photocatalysis;heterostructure;antibiotic wastewater;active species;mechanism

成为VIP会员查看完整内容
0

相关内容

严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
绿色制造标准化白皮书(2021版),48页pdf
专知会员服务
32+阅读 · 2021年11月10日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
26+阅读 · 2020年4月6日
【伯克利-滴滴出行】深度学习多源领域自适应综述论文
专知会员服务
53+阅读 · 2020年2月28日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
AI芯片发展现状及前景分析
专知
1+阅读 · 2021年5月2日
【CPS】CPS应用案例集
产业智能官
81+阅读 · 2019年8月9日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
19+阅读 · 2021年6月15日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关VIP内容
严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
绿色制造标准化白皮书(2021版),48页pdf
专知会员服务
32+阅读 · 2021年11月10日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
83+阅读 · 2021年8月8日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
【CVPR2020】MSG-GAN:用于稳定图像合成的多尺度梯度GAN
专知会员服务
26+阅读 · 2020年4月6日
【伯克利-滴滴出行】深度学习多源领域自适应综述论文
专知会员服务
53+阅读 · 2020年2月28日
相关资讯
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
AI芯片发展现状及前景分析
专知
1+阅读 · 2021年5月2日
【CPS】CPS应用案例集
产业智能官
81+阅读 · 2019年8月9日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
微信扫码咨询专知VIP会员