In this paper, we deal with a general distributed constrained online learning problem with privacy over time-varying networks, where a class of nondecomposable objective functions are considered. Under this setting, each node only controls a part of the global decision variable, and the goal of all nodes is to collaboratively minimize the global objective over a time horizon $T$ while guarantees the security of the transmitted information. For such problems, we first design a novel generic algorithm framework, named as DPSDA, of differentially private distributed online learning using the Laplace mechanism and the stochastic variants of dual averaging method. Then, we propose two algorithms, named as DPSDA-C and DPSDA-PS, under this framework. Theoretical results show that both algorithms attain an expected regret upper bound in $\mathcal{O}( \sqrt{T} )$ when the objective function is convex, which matches the best utility achievable by cutting-edge algorithms. Finally, numerical experiment results on both real-world and randomly generated datasets verify the effectiveness of our algorithms.


翻译:在本文中,我们处理一个普遍分布的有限在线学习问题,涉及时间变化网络的隐私,其中考虑的是一组不可分的客观功能。在此背景下,每个节点只控制全球决定变量的一部分,所有节点的目标是在一个时间跨度内合作尽量减少全球目标$T$,同时保证所传输信息的安全。对于这些问题,我们首先设计一个名为DPSDA的新型通用算法框架,用于使用拉普尔机制和双均率方法的随机变异的有区别的私人在线学习。然后,我们在此框架下提出两个算法,称为DPSDA-C和DPSDA-PS。理论结果显示,当目标函数为convex时,两种算法都达到了预期的负数上限,即$\mathcal{O}(\qrt{T}}美元,这与尖端算法所能达到的最佳效用相匹配。最后,在现实世界和随机生成的数据集上的数字实验结果可以验证我们的算法的有效性。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
14+阅读 · 2022年8月25日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
21+阅读 · 2020年10月11日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员