We consider universal quantization with side information for Gaussian observations, where the side information is a noisy version of the sender's observation with noise variance unknown to the sender. In this paper, we propose a universally rate optimal and practical quantization scheme for all values of unknown noise variance. Our scheme uses Polar lattices from prior work, and proceeds based on a structural decomposition of the underlying auxiliaries so that even when recovery fails in a round, the parties agree on a common "reference point" that is closer than the previous one. We also present the finite blocklength analysis showing an sub-exponential convergence for distortion and exponential convergence for rate. The overall complexity of our scheme is $O(N^2\log^2 N)$ for any target distortion and fixed rate larger than the rate-distortion bound.
翻译:我们考虑在高斯观察时采用通用的定量和侧边信息。 侧边信息是发送者观察到的噪音差异的噪音版本。 在本文中,我们提出了一个用于所有未知噪音差异值的普遍比率最佳和实用的量化计划。 我们的计划使用先前工作中的极地拉托克,并基于基础辅助器的结构分解进行计算,这样即使回收在一轮中失败,双方也会商定一个比上一轮更接近的共同的“ 参考点 ” 。 我们还提出一个有限区长分析,显示扭曲和指数趋同的分量趋同。 我们计划的总体复杂性是,任何目标扭曲和固定利率大于率约束值的值( $O 2\ log ⁇ 2 N ) 。