To accurately quantify landslide hazard in a region of Turkey, we develop new marked point process models within a Bayesian hierarchical framework for the joint prediction of landslide counts and sizes. To accommodate for the dominant role of the few largest landslides in aggregated sizes, we leverage mark distributions with strong justification from extreme-value theory, thus bridging the two broad areas of statistics of extremes and marked point patterns. At the data level, we assume a Poisson distribution for landslide counts, while we compare different "sub-asymptotic" distributions for landslide sizes to flexibly model their upper and lower tails. At the latent level, Poisson intensities and the median of the size distribution vary spatially in terms of fixed and random effects, with shared spatial components capturing cross-correlation between landslide counts and sizes. We robustly model spatial dependence using intrinsic conditional autoregressive priors. Our novel models are fitted efficiently using a customized adaptive Markov chain Monte Carlo algorithm. We show that, for our dataset, sub-asymptotic mark distributions provide improved predictions of large landslide sizes compared to more traditional choices. To showcase the benefits of joint occurrence-size models and illustrate their usefulness for risk assessment, we map landslide hazard along major roads.
翻译:为了准确量化土耳其地区的滑坡危害,我们在贝叶斯级框架内开发了新的标记点进程模型,以共同预测滑坡的大小和大小。为了适应少数几大滑坡在总体大小方面的主要作用,我们利用极端价值理论的有力理由来利用标记分布,从而缩小极端和标志点模式两个广泛的统计领域。在数据层面上,我们假定对滑坡计数进行Poisson分布,同时我们比较不同“亚不便”分布的滑坡大小,以灵活模拟其上下尾巴。在潜伏层面,Poisson的强度和大小分布中位值在固定和随机效应方面空间上各不相同,共同的空间组成部分捕捉了山崩计和标志型体大小之间的交叉关系。我们用内在的有条件自闭式自动递的前题来模拟空间依赖。我们的新模型使用定制的适应性马可夫链蒙特卡洛算法来有效配置。我们显示,对于我们的数据集、次防滑坡标记分布的大小和大小中位分布在空间方面各不相同的分布中,提供了对大型土地联合风险的预测。