Measuring the structural parameters (size, total brightness, light concentration, etc.) of galaxies is a significant first step towards a quantitative description of different galaxy populations. In this work, we demonstrate that a Bayesian Neural Network (BNN) can be used for the inference, with uncertainty quantification, of such morphological parameters from simulated low-surface-brightness galaxy images. Compared to traditional profile-fitting methods, we show that the uncertainties obtained using BNNs are comparable in magnitude, well-calibrated, and the point estimates of the parameters are closer to the true values. Our method is also significantly faster, which is very important with the advent of the era of large galaxy surveys and big data in astrophysics.
翻译:测量星系的结构参数(大小、总亮度、光浓度等)是朝着对不同星系群进行定量描述迈出的重要的第一步。 在这项工作中,我们证明,可以使用贝叶西亚神经网络(BNN)来推断模拟低地表光亮度星系图像的这种形态参数,并进行不确定性量化。与传统的配置配置方法相比,我们表明,使用BNNs获得的不确定性在数量上是可比的,经过充分校准,参数的点估计接近于真实值。我们的方法也非常快,随着大型星系调查和天体物理学大数据时代的到来,这也非常重要。