Distinguishing cause from effect using observations of a pair of random variables is a core problem in causal discovery. Most approaches proposed for this task, namely additive noise models (ANM), are only adequate for quantitative data. We propose a criterion to address the cause-effect problem with categorical variables (living in sets with no meaningful order), inspired by seeing a conditional probability mass function (pmf) as a discrete memoryless channel. We select as the most likely causal direction the one in which the conditional pmf is closer to a uniform channel (UC). The rationale is that, in a UC, as in an ANM, the conditional entropy (of the effect given the cause) is independent of the cause distribution, in agreement with the principle of independence of cause and mechanism. Our approach, which we call the uniform channel model (UCM), thus extends the ANM rationale to categorical variables. To assess how close a conditional pmf (estimated from data) is to a UC, we use statistical testing, supported by a closed-form estimate of a UC channel. On the theoretical front, we prove identifiability of the UCM and show its equivalence with a structural causal model with a low-cardinality exogenous variable. Finally, the proposed method compares favorably with recent state-of-the-art alternatives in experiments on synthetic, benchmark, and real data.


翻译:使用随机变量观测结果来区分因果是因果发现的一个核心问题。为这项任务提出的大多数方法,即添加噪声模型(AMNM),都只够量化数据。我们提出了一个标准,以解决因果问题,即绝对变量(以没有实际顺序的组合生活),其依据是将一个有条件的概率质量功能(pmf)视为一个离散的记忆性信道。我们选择条件式pmf接近一个统一频道(UC)的最可能的因果方向。我们使用统计测试,并辅之以对UC频道的封闭式估计。在理论方面,我们证明UCM(因果效应)与原因分布无关,符合原因和机制的独立性原则。我们称之为统一频道模型(UCM),从而将AM的理由扩大到绝对的变量。为了评估有条件的pmf(根据数据估计)与UC频道的距离有多近,我们使用CUC频道的封闭式估计。在理论方面,我们证明UCM的有条件的(因果效应)是独立于原因分布的,与原因分布分配无关。我们称之为统一频道的特性,最后将它的结构模型模型与最近提出的结构型模型为等同性,最后与结构型模型,并附有结构型模型。</s>

0
下载
关闭预览

相关内容

【干货书】工程和科学中的概率和统计,
专知会员服务
57+阅读 · 2022年12月24日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月4日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员