Contextual information plays a vital role for software developers when understanding and fixing a bug. Context can also be important in deep learning-based program repair to provide extra information about the bug and its fix. Existing techniques, however, treat context in an arbitrary manner, by extracting code in close proximity of the buggy statement within the enclosing file, class, or method, without any analysis to find actual relations with the bug. To reduce noise, they use a predefined maximum limit on the number of tokens to be used as context. We present a program slicing-based approach, in which instead of arbitrarily including code as context, we analyze statements that have a control or data dependency on the buggy statement. We propose a novel concept called dual slicing, which leverages the context of both buggy and fixed versions of the code to capture relevant repair ingredients. We present our technique and tool called Katana, the first to apply slicing-based context for a program repair task. The results show Katana effectively preserves sufficient information for a model to choose contextual information while reducing noise. We compare against four recent state-of-the-art context-aware program repair techniques. Our results show Katana fixes between 1.5 to 3.7 times more bugs than existing techniques.


翻译:在理解和修复错误时,背景信息对软件开发者具有关键作用。背景信息在理解和修复错误时,对于软件开发者来说,对于软件开发者来说具有关键作用。在深层次的基于学习的程序修复中,对于提供关于错误及其修正的额外信息也很重要。但是,现有的技术,通过在所附文件、分类或方法中提取与错误语句相近的代码,在不作任何分析以找到与错误的实际关系的情况下,任意地处理上下文。为了减少噪音,他们使用预设的最大限,对用作上下文的标牌数使用预先定义的最大限值。我们提出了一个基于程序剪切除法的方法,其中,而不是任意地将代码作为上下文,我们分析了对错误语句具有控制或数据依赖性的语句。我们提出了一个称为双重剪切的新概念,即利用错误语和固定版本的代码来捕捉相关的修理成分。我们展示了我们的技术和工具,称为Katana,首先在程序修理任务中应用基于剪贴语的语系。结果显示卡塔纳有效地保存了足够的信息,用于选择背景信息的模式,同时减少噪音。我们比较了最近四个状态的、背景、背景观测程序技术,而不是现有3.7。我们的成果显示,我们的数据显示了比现有的3.7。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月16日
Arxiv
13+阅读 · 2021年10月22日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员