Gaussian process regression is a powerful method for predicting states based on given data. It has been successfully applied for probabilistic predictions of structural systems to quantify, for example, the crack growth in mechanical structures. Typically, predefined mean and covariance functions are employed to construct the Gaussian process model. Then, the model is updated using current data during operation while prior information based on previous data is ignored. However, predefined mean and covariance functions without prior information reduce the potential of Gaussian processes. This paper proposes a method to improve the predictive capabilities of Gaussian processes. We integrate prior knowledge by deriving the mean and covariance functions from previous data. More specifically, we first approximate previous data by a weighted sum of basis functions and then derive the mean and covariance functions directly from the estimated weight coefficients. Basis functions may be either estimated or derived from problem-specific governing equations to incorporate physical information. The applicability and effectiveness of this approach are demonstrated for fatigue crack growth, laser degradation, and milling machine wear data. We show that well-chosen mean and covariance functions, like those based on previous data, significantly increase look-ahead time and accuracy. Using physical basis functions further improves accuracy. In addition, computation effort for training is significantly reduced.
翻译:Gausian 进程回归是依据给定数据预测状态的有力方法。 它被成功地应用于对结构系统的概率预测, 以量化机械结构的裂变增长。 通常, 使用预先定义的平均值和共变函数来构建高斯进程模型。 然后, 模型在运行期间使用当前数据进行更新, 而先前基于先前数据的信息被忽略。 但是, 预先定义的中值和共变数功能没有事先信息, 降低了高斯进程的潜力 。 本文提出了一个提高高斯进程的预测能力的方法 。 我们从先前的数据中得出平均值和共变数函数, 从而整合了先前的知识。 更具体地说, 我们首先用加权的基函数来比较先前的数据, 然后直接从估计的加权系数中得出平均值和共变数函数 。 基准函数可能是根据特定问题的治理方程式来估算或衍生的, 以纳入物理信息 。 这种方法的适用性和有效性表现在疲劳、 激光退化和碾磨机磨机磨数据方面 。 我们通过从先前的数据中得出精度和共变平均值和共变函数, 。 使用物理计算方法将大大改进了精确性功能 。 。