项目名称: 印楝素诱导小菜蛾细胞自噬和凋亡的分子机理

项目编号: No.31471793

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 农业科学

项目作者: 徐汉虹

作者单位: 华南农业大学

项目金额: 85万元

中文摘要: 印楝素被认为是世界上最优秀的植物源农药,但其作用机制尚未明确。申请者首次观察到了低剂量印楝素可以诱导细胞自噬,随着诱导时间的延长,细胞凋亡率增加。明确印楝素作用下细胞自噬和凋亡两者相互关系,和印楝素诱导自噬、凋亡的分子机制,是揭示印楝素抑制昆虫细胞生长发育的关键。本项目以小菜蛾及其离体胚胎细胞系为模型,通过激光共聚焦、RT-PCR、Western blot等手段研究印楝素作用下细胞自噬和凋亡关键基因/蛋白Atg8和分子开关Atg5的表达情况,以明确两者关系;并进一步研究印楝素对胰岛素-PI3K-Tor分子通路中关键基因/蛋白InR、PI3K、Tor的影响,以揭示胰岛素-PI3K-Tor分子通路在印楝素诱导细胞自噬和凋亡的机制,从而揭示印楝素抑制昆虫生长发育的分子机理,为印楝素的科学使用提供理论根据,为新颖作用靶标的农药分子设计提供重要思路。

中文关键词: 印楝素;细胞自噬;细胞凋亡;作用机理;小菜蛾

英文摘要: Azadirachtin is the best botanical pesticide in the world, however the mechanism of azadiractin is still elusive.We has first observed that low concentration of azadirachtin induced autophagy, and apoptosis increased with the induced time extended. To reveal the relation and mechanism of autophagy and apoptosis is crucial for explain of how azadirachtin inhibites the growth and development of inescts. Here we will determine the morphological characteristics of autophagy and apotosis and the expressions of the autophagy-related genes Atg5 and Atg8 in Plutella xylostella and its cultured embryonic cells treated with azadirachtin.The genes InR/PI3K/Tor in the insulin-PI3K-Tor signaling pathway will be further evaluated to uncover the molecular mechanism of induced autophagy and apoptosis by azadiractin. It will provide a guidance for its scientific structure modification andstructure-activity relationship analysis, and a new idea for the new pesticide discovery with a new mode of action.

英文关键词: Azadirachtin;Autophagy;Apoptosis;Mechanism of action;Plutella xylostella

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】弱监督语义分割的类重新激活图
专知会员服务
16+阅读 · 2022年3月7日
AI药物研发发展研究报告(附报告)
专知会员服务
89+阅读 · 2022年2月11日
【NeurIPS2021】对比主动推理
专知会员服务
29+阅读 · 2021年10月21日
边缘机器学习,21页ppt
专知会员服务
82+阅读 · 2021年6月21日
专知会员服务
32+阅读 · 2020年10月2日
AI创新者:破解项目绩效的密码
专知会员服务
33+阅读 · 2020年6月21日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Nature重磅:“饿死”癌细胞,又添新线索
学术头条
0+阅读 · 2021年10月21日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
【CVPR2022】弱监督语义分割的类重新激活图
专知会员服务
16+阅读 · 2022年3月7日
AI药物研发发展研究报告(附报告)
专知会员服务
89+阅读 · 2022年2月11日
【NeurIPS2021】对比主动推理
专知会员服务
29+阅读 · 2021年10月21日
边缘机器学习,21页ppt
专知会员服务
82+阅读 · 2021年6月21日
专知会员服务
32+阅读 · 2020年10月2日
AI创新者:破解项目绩效的密码
专知会员服务
33+阅读 · 2020年6月21日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员