CUDA is one of the most popular choices for GPU programming, but it can only be executed on NVIDIA GPUs. Executing CUDA on non-NVIDIA devices not only benefits the hardware community, but also allows data-parallel computation in heterogeneous systems. To make CUDA programs portable, some researchers have proposed using source-to-source translators to translate CUDA to portable programming languages that can be executed on non-NVIDIA devices. However, most CUDA translators require additional manual modifications on the translated code, which imposes a heavy workload on developers. In this paper, CuPBoP is proposed to execute CUDA on non-NVIDIA devices without relying on any portable programming languages. Compared with existing work that executes CUDA on non-NVIDIA devices, CuPBoP does not require manual modification of the CUDA source code, but it still achieves the highest coverage (69.6%), much higher than existing frameworks (56.6%) on the Rodinia benchmark. In particular, for CPU backends, CuPBoP supports several ISAs (e.g., X86, RISC-V, AArch64) and has close or even higher performance compared with other projects. We also compare and analyze the performance among CuPBoP, manually optimized OpenMP/MPI programs, and CUDA programs on the latest Ampere architecture GPU, and show future directions for supporting CUDA programs on non-NVIDIA devices with high performance


翻译:CUDA 是 GPU 最受欢迎的选择之一, 但只能在 NVIDIA GPU 上执行。 执行 CUDA 在 NVIDIA 非 NVIDIA 设备上执行 CUDA 不仅有利于硬件群体, 而且还允许在不同系统中进行数据平行计算 。 为了使 CUDA 程序具有可移植性, 一些研究人员提议使用源到源翻译将 CUDA 翻译成非 NVIDIA 设备上可执行的便携式编程语言 。 然而, 大多数 CUDA 笔译员需要对翻译的代码进行额外的手工修改, 这会给开发者带来沉重的工作量 。 在本文中, COPBOP 提议在非 NVIA 设备上执行 CUDA 设备上执行 CUDA, 与现有的非 NVDIA 设备上执行CUDA 程序相比, COPBOP 并不需要手工修改 CUDA 源码, 但是在 Rodinia 标上达到最高范围( 69.6%) 大大高于现有框架( 56.6 % ),, 。 特别是, CUPPP 支持 支持一些 SA- 和 CISA 高级项目 和 CISA 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
66+阅读 · 2022年4月13日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员