Functional data analysis (FDA) finds widespread application across various fields, due to data being recorded continuously over a time interval or at several discrete points. Since the data is not observed at every point but rather across a dense grid, smoothing techniques are often employed to convert the observed data into functions. In this work, we propose a novel Bayesian approach for selecting basis functions for smoothing one or multiple curves simultaneously. Our method differentiates from other Bayesian approaches in two key ways: (i) by accounting for correlated errors and (ii) by developing a variational EM algorithm instead of a Gibbs sampler. Simulation studies demonstrate that our method effectively identifies the true underlying structure of the data across various scenarios and it is applicable to different types of functional data. Our variational EM algorithm not only recovers the basis coefficients and the correct set of basis functions but also estimates the existing within-curve correlation. When applied to the motorcycle dataset, our method demonstrates comparable, and in some cases superior, performance in terms of adjusted $R^2$ compared to other techniques such as regression splines, Bayesian LASSO and LASSO. Additionally, when assuming independence among observations within a curve, our method, utilizing only a variational Bayes algorithm, is in the order of thousands faster than a Gibbs sampler on average. Our proposed method is implemented in R and codes are available at https://github.com/acarolcruz/VB-Bases-Selection.
翻译:暂无翻译