We study the continuous multi-reference alignment model of estimating a periodic function on the circle from noisy and circularly-rotated observations. Motivated by analogous high-dimensional problems that arise in cryo-electron microscopy, we establish minimax rates for estimating generic signals that are explicit in the dimension $K$. In a high-noise regime with noise variance $\sigma^2 \gtrsim K$, the rate scales as $\sigma^6$ and has no further dependence on the dimension. This rate is achieved by a bispectrum inversion procedure, and our analyses provide new stability bounds for bispectrum inversion that may be of independent interest. In a low-noise regime where $\sigma^2 \lesssim K/\log K$, the rate scales instead as $K\sigma^2$, and we establish this rate by a sharp analysis of the maximum likelihood estimator that marginalizes over latent rotations. A complementary lower bound that interpolates between these two regimes is obtained using Assouad's hypercube lemma.
翻译:我们从吵闹和循环旋转的观测中研究在圆圈上估计定期函数的连续多参考比对模型。受冷冻-电子显微镜中出现的类似高维问题的驱动,我们建立了用于估计维度为$K的明确通用信号的微量速率。在一个噪音差异为$\sigma2\2\gtrsim K$的高噪音制度中,以美元计的比重为$\sigma6$,不再进一步依赖该维度。这一比率是通过双倍反位程序实现的,我们的分析为二倍反位相提供了可能具有独立兴趣的双倍反位新稳定度。在一个低噪制度中,以美元=gma2\lessim K/\log K$为比例,而不是以美元=gma2$,我们通过对在潜伏旋转上边缘化的最大可能性估测算器进行精确分析来确定这一比率。一个补充的较低约束是,利用Assoudube的利姆玛来获得这两种制度之间的相互对等。