项目名称: 随机多尺度系统的亚稳态理论
项目编号: No.11501344
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 陈晓鹏
作者单位: 汕头大学
项目金额: 18万元
中文摘要: 本课题拟利用不变流形理论来描述随机多尺度系统的亚稳态. 主要研究随机Burgers方程的亚稳态行为和亚稳态Markov过程的拟平稳分布. 考虑随机Burgers方程的粘度系数趋于零时, 该方程的不变流形和亚稳态之间的关系. 对于亚稳态Markov过程, 用对应的Fokker-Planck方程来考虑该过程的拟平稳分布, 用不变流形来解释它们的亚稳态行为. 进一步探讨把该理论应用到亚稳态随机多尺度系统的计算当中. 该课题为随机多尺度系统的亚稳态研究提供新的数学工具.
中文关键词: 随机偏微分方程;随机不变流形;亚稳态;马尔可夫过程;最大期望算法
英文摘要: The metastability for stochastic mutiscale systems is described by invariant manifolds theory. In particular, the metastability for stochastic Burgers equation and quasi-stationary measure for metastable Markov processes are considered. The relationship between the invariant manifolds and metastability are researched when the viscosity of stochastic Burgers equation is convergent to zero. While for the metastable Markov process, the quasi-stationary measure for corresponding Fokker-Planck equation gives the metastable behavior by using invariant manifold theory. Furthermore, the theory gives a method to compute the metastibility for stochastic mutiscale systems. This is a new tool for the metastable stochastic mutiscale systems.
英文关键词: stochastic partial differential equations;stochastic invariant manifolds;metastability;Markov processes;expectation maximization algorithm