In this paper, a multiscale constitutive framework for one-dimensional blood flow modeling is presented and discussed. By analyzing the asymptotic limits of the proposed model, it is shown that different types of blood propagation phenomena in arteries and veins can be described through an appropriate choice of scaling parameters, which are related to distinct characterizations of the fluid-structure interaction mechanism (whether elastic or viscoelastic) that exist between vessel walls and blood flow. In these asymptotic limits, well-known blood flow models from the literature are recovered. Additionally, by analyzing the perturbation of the local elastic equilibrium of the system, a new viscoelastic blood flow model is derived. The proposed approach is highly flexible and suitable for studying the human cardiovascular system, which is composed of vessels with high morphological and mechanical variability. The resulting multiscale hyperbolic model of blood flow is solved using an asymptotic-preserving Implicit-Explicit Runge-Kutta Finite Volume method, which ensures the consistency of the numerical scheme with the different asymptotic limits of the mathematical model without affecting the choice of the time step by restrictions related to the smallness of the scaling parameters. Several numerical tests confirm the validity of the proposed methodology, including a case study investigating the hemodynamics of a thoracic aorta in the presence of a stent.
翻译:本文介绍并讨论了一维血液流模型的多尺度构成框架。通过分析拟议模型的无弹性极限,可以表明,通过适当选择比例参数,可以描述动脉和血管中不同类型的血液传播现象,这些参数与船只壁与血液流之间存在的流体-结构互动机制(弹性或粘结性)的不同特征有关。在这些无症状的界限中,文献中众所周知的血液流模型得到恢复。此外,通过分析系统局部弹性平衡的渗透性,可以产生一种新的粘结性血液流模式。拟议方法非常灵活,适合于研究由具有高形态和机械变异性的船只组成的人类心血管系统。由此产生的多比例性血液流模型使用一种无症状-保存不易显性调色-库塔·芬特量量法方法加以解决,该方法确保数字方案与系统局部弹性平衡的跨度界限保持一致。提议的方法非常灵活,适合于研究人类心血管系统,后者由具有高度形态和机械变异性的船只组成。由此形成的多层次的血液流动模型使用一种防腐蚀性保存不深的图理学方法来解决。 一项相关的数学模型,通过一个与数学模型的细度测试模型的定的大小弹性参数测试,从而确定一个影响了数字流体流体力的大小测试方法。