This paper focuses on the Partitioned-Solution Approach (PSA) employed for the Time-Domain Simulation (TDS) of dynamic power system models. In PSA, differential equations are solved at each step of the TDS for state variables, whereas algebraic equations are solved separately. The goal of this paper is to propose a novel, matrix-pencil based technique to study numerical stability and accuracy of PSA in a unified way. The proposed technique quantifies the numerical deformation that PSA-based methods introduce to the dynamics of the power system model, and allows estimating useful upper time step bounds that achieve prescribed simulation accuracy criteria. The family of Predictor-Corrector (PC) methods, which is commonly applied in practical implementations of PSA, is utilized to illustrate the proposed technique. Simulations are carried out on the IEEE 39-bus system, as well as on a 1479-bus model of the All-Island Irish Transmission System (AIITS).


翻译:本文集中讨论应用于动态电力系统模型时间域模拟(TDS)的分区解方法(PSA)。在PSA中,微分方程会在TDS的每个步骤中被求解,而代数方程则会单独求解。本文的目标是提出一种基于矩阵铅笔的新技术,以一种统一的方式来研究PSA的数值稳定性和精度。所提议的技术量化了基于PSA的方法在电力系统模型的动力学中引入的数值变形,并允许估计实现所需模拟精度标准的有用上限时间步长。常用于PSA实际实现中的预测校正(PC)方法系列被用于说明所提议的技术。在IEEE 39节点系统和爱尔兰全岛输电系统(AIITS)的1479个节点模型上进行了模拟。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【NeurIPS2020】点针图网络,Pointer Graph Networks
专知会员服务
39+阅读 · 2020年9月27日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员